

Conference Presentation
Oncology Forecasting

Oncology Forecasting Part 1: Design, Modeling and Alignment

Foster Rosenblatt

Oncology Forecasting

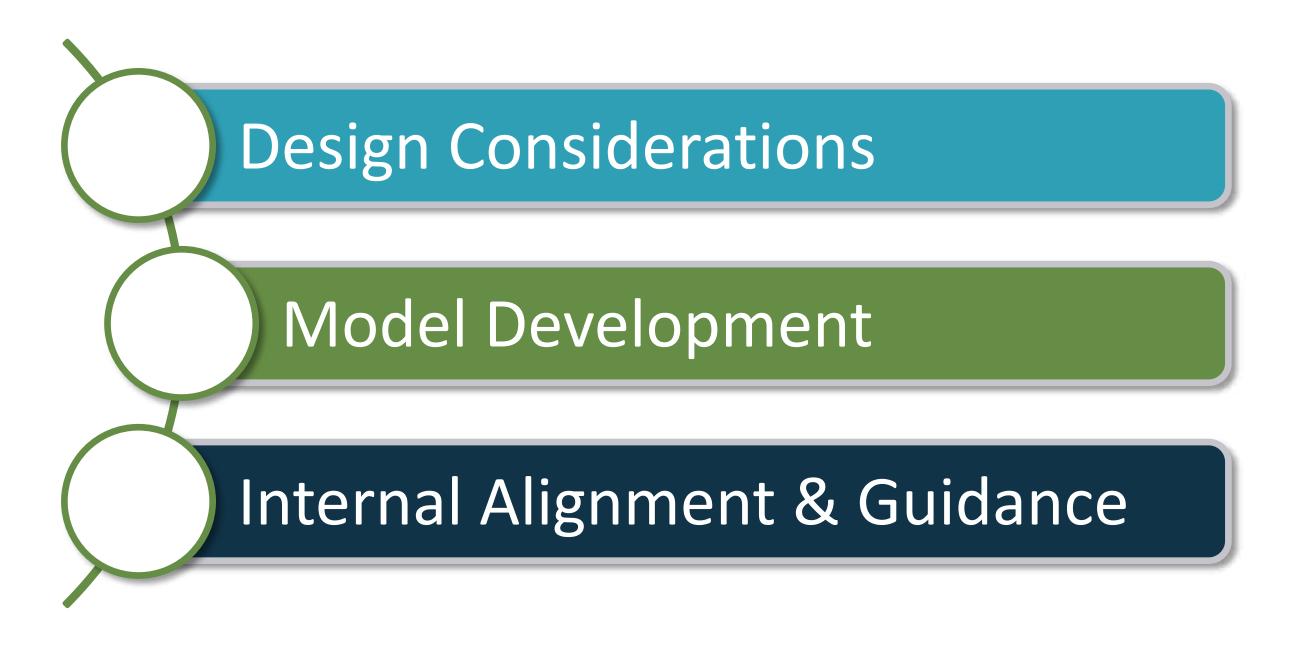
Part 1:

Design, Modeling and Alignment

Hosted by:

Privileged & Confidential

Today's Presenters


Bernie Manente Associate Partner

Jerry Rosenblatt, PhD Managing Partner

www.fosterrosenblatt.com

Webinar Overview

www.fosterrosenblatt.com

Question

What will be the top selling oncology brand in 2019?

- 1) Revlimid
- 2) Opdivo
- 3) Keytruda
- 4) Herceptin
- 5) Not sure

Type your response into the survey tool

www.fosterrosenblatt.com

Confidential | Copyright Sep-19

1

Design Considerations

Model design must support the forecasting process which requires forecasters to ...

Identify & Quantify Product Parameters

Identify & Quantify Environmental Parameters

Develop Quantitative Projections

Final Validated Forecast

www.fosterrosenblatt.com

Design Considerations

This forecasting process is a mixture of

The Oncology forecasting process requires greater elements of both "Art" and "Science"

www.fosterrosenblatt.com

Question

What are the challenges when forecasting oncology products?

- 1) Harder to determine total patients
- 2) Harder to estimate share
- 3) Harder to model competitive impacts
- 4) Harder to estimate patient subsets (biomarkers)
- 5) Not sure

Type your response into the survey tool

www.fosterrosenblatt.com

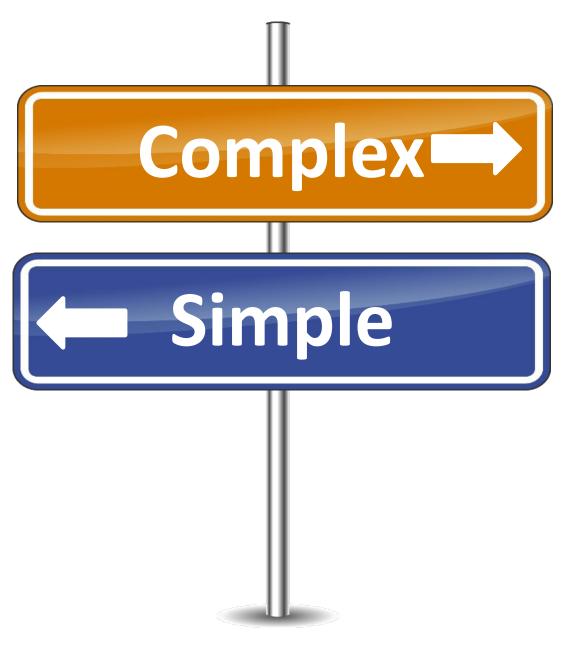
Design Considerations

Key differences in forecasting oncology products

- The Clinical Environment is typically more complex
- The Product Profile and the Evidence Bundle cover multiple diseases
- 3. Clinical Application is in flux
- 4. Degree of **Unmet Medical Need** drives uptake
- 5. Few Comparators in the universe of products

Much more challenging to arrive at a "Market" (treatable patients) definition.

Design Considerations


The oncology forecasting process requires... "Art" to address "Science

- Translation from clinical evidence to share
- Probability, timing and impact of new indications
- Probability, timing and impact of competitors
- Application of analogs

"Science" to manage

- Quantitative Market projections
 - Units, Sales
 - Epidemiology
 - Incidence, prevalence, survival
- Clinical evidence bundle
- Clinical application

Complexity Drives Design

Design considerations are driven

by the required complexity of

the forecast model

- a) Input complexity
- b) Output complexity
- c) Market complexity

Input Design Complexity

Driven by corporate desire, but may be influenced by the product(s)

Top line directional data

- Detailed forecast by patient subset

Single country

- Multiple countries

- Minimal product input variables ——— o Multiple product input variables
- No "Event" requirements

- **Event requirements**

Output Design Complexity

Driven by corporate desire

- One or two forecast outputs (Dollars/Patient)
- Multiple forecast outputs (Patients,
 Gross and Net Dollars, MGs, Share)
- Single country/single currency
- O Multiple countries & currencies

 No Subsequent Analysis of Outputs Additional analysis of outputs:
 Waterfall analysis, tornado plots,
 sensitivity analysis, What if scenarios

www.fosterrosenblatt.com

Market Design Complexity

Based on the profile of the product or portfolio being forecast

- Single Product, Single Tumor
- Single Product, Multiple Tumors
- Multiple Products, Multiple Tumors

- Stable treatment environment
- **Evolving treatment environment**

- Data does not support accuracy (a reality for rare tumors)
- Data permits more accuracy
- Readily available patient proxies (incidence, deaths)
- Challenging patient proxies (prevalence, new biomarkers)

www.fosterrosenblatt.com

Confidential | Copyright Sep-19

13

The Link to Design

Model development must address design considerations and follow a

structured process

www.fosterrosenblatt.com

Question

What are some of your biggest challenges with forecast model development?

- 1) Process takes too long
- 2) Models are not transparent
- 3) Models are too complex
- 4) Models are too inflexible
- 5) Models do not give me what I need

Type your response into the survey tool

www.fosterrosenblatt.com

These steps in oncology forecasting process have been proven to produce the best results

Structured Oncology Forecasting Development Process

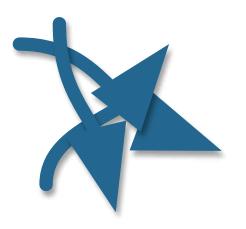
- 1. Develop the Baseline Market
- 2. Address required Input and Output Complexity
- 3. Identify Events (if required)
- 4. Acquire or Construct the Forecast Model
- Developing "Reasonable" Business/Forecast Scenarios

Securing internal alignment is an important part of this process at each step and we will discuss this separately

www.fosterrosenblatt.com

Confidential | Copyright Sep-19

Foster Rosenblatt


Baseline Market: Demand or Epi based?

"Market Complexity" will dictate certain development approaches relative to the methodology/model type

Simple Market:

Epi model (static patient flow) or demand model

Complex Market:

Epi model: static patient flow or adaptive patient flow

Demand-Based Models

Use demand-based model to determine baseline market opportunity by:

- Sourcing historical "demand data" (TRx, Units, Patients)
- Projecting historical demand data using statistical methods
 - bottom-up (all products individually forecast to build a market)
 - top-down (the entire market forecast as a single entity line item)

Increasingly less common!

www.fosterrosenblatt.com

Tips

Best use: well defined,
 mature markets with
 robust demand data

Note: In Oncology, a demand methodology may be applied in static tumors/treatment segments with single indication products

Epi-Based Models

Use epidemiology/patient-based model to create baseline market opportunity using:

Disease Incidence rates, disease prevalence rates (directly sourced or calculated),
 biomarker incidence and testing rates, diagnosis rates, treatment and cure rates

www.fosterrosenblatt.com

2 Epi-Based Approaches

Static Patient Flow Epi-Based Models

- The "market" (treatable pts) is determined through fixed assumptions
- Patient movement is modeled in a linear, deterministic fashion
- Future market dynamics are not modeled
- Development must accommodate these requirements
- Ideal for quick turn-around projections

Demographic data

Incidence or prevalence rates

Biomarker / Treatment subsets

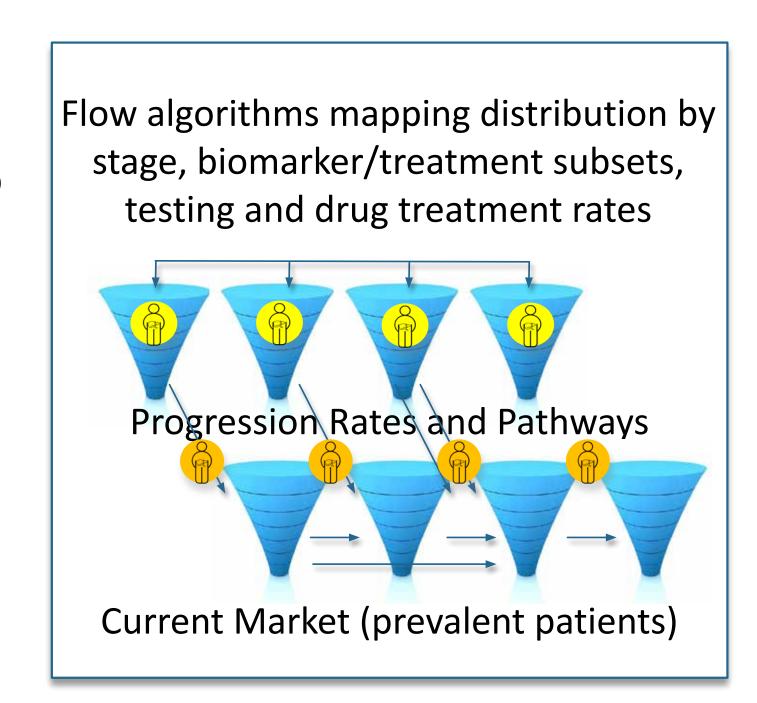
Testing and Detection Rates (biomarkers)

Drug Treatment Rates

Progression Curves (Recurrence proxy)

Current Market

www.fosterrosenblatt.com


Confidential | Copyright Sep-19

20

2 Epi-Based Approaches

Adaptive Patient Flow Epi-Based Models

- Model uses treatment algorithms to model current and future patient pathways and clinical movements
- Accommodate multiple types of patient progression
- Require more development
- Provides more precise estimates of treatable patients

www.fosterrosenblatt.com

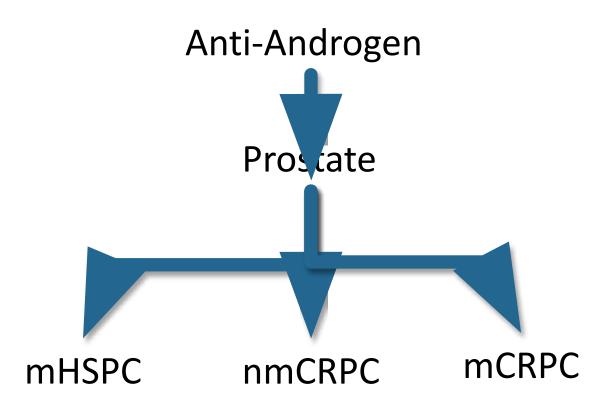
A Tale of 2 Forecasts

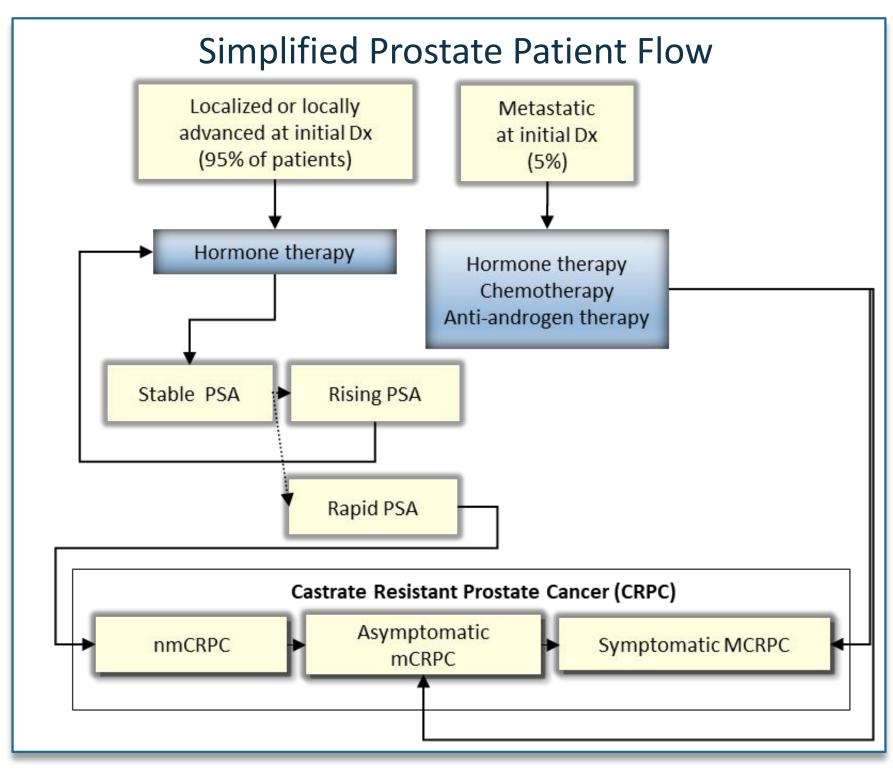
Small biotech

- Requires \$ forecasts by tumour for USA
- Phase III trial planned 2020 launch

Kinase Inhibitor

Static Patient Flow Epi-Based Example


	2019	2020
	2013	2020
Newly Dxd AML: Intensive treatment for Induction	19,442	19,520
JS, AML - Induction		
% Receiving Intensive Treatment		
Base Case	70.0%	70.0%
% FLT-3		
Base Case	30.0%	30.0%
% Diagnosed		
Base Case	99.0%	99.0%
% Of FLT-3 patients receiving drug treatment for induction		
Base Case	99.0%	99.0%
% Progressing to Consolidation		
Base Case	98.0%	95.0%
Baseline Product Share		
Base Case	45.0%	85.0%


www.fosterrosenblatt.com

A Tale of 2 Forecasts

Large pharma

- Requires forecasts by tumour and patient segment for multiple countries with sensitivity analysis
- Phase II/III trials multiple launches post 2020

www.fosterrosenblatt.com

Confidential | Copyright Sep-19

23

Data Requirements for Models

Demand based models

- Product data (\$, units, patients)
- Market data

Epi based models

- Demographic data
- Epidemiology data
- Proxies for patient progression/movement
 - Static patient flow:Recurrence curves
 - Adaptive patient flow: staging, treatment, recurrence rates and curves, and recurrence pathway

www.fosterrosenblatt.com

Confidential | Copyright Sep-19

24

Sourcing Data for Static Patient Flow Epi Models

- Recurrence curves for single flow models
 - Proxy for patient movement to simulate patient flow into a single downstream line of treatment
 - Typically developed as a percentage allocation representing some form of drop off over time (crude simulation of recurrence)
 - Can be sourced from trial data, Kaplan Meier curves, qualitative research data or internal assumptions
- F|R will conduct a 2nd webinar in 1 week covering detailed data sources

www.fosterrosenblatt.com

Creating Algorithms for Adaptive Patient Flow Epi Models

- Algorithms are incorporated during development to create models that simulate current and future patient flows
- The model must capture multiple data points including:
 - Stage Distribution at Dx
 - Treatment Distribution or Cluster
 - Recurrence Data by Treatment Cluster
 - Rates, paths, curves

www.fosterrosenblatt.com

Accommodating All Other Product Related Inputs

- Molecule/Brand Share (%), Duration of therapy, Dosage, Pricing, Compliance,
 SKUs
- Not unique to Oncology but there are some specific twists
 - Share may apply to multiple "markets" and analogs are challenging
 - Duration may be variable
 - Dosing may involve complex down dosing and/or stoppages
 - There may be a multitude of SKUs with variable discounts
 - Development must ensure that these are addressed

www.fosterrosenblatt.com

Including "Event" capabilities

- o "Events" more require complex development
- Events can represent competitive entrants, new indications and reimbursement impacts
- Events are structured in the development process to act as influencers on baseline product share
- O Defined by timing, uptake profile, time to peak, share impact
- Events can provide structure and rigour to complex oncology markets

www.fosterrosenblatt.com

Question

What are the challenges when using analogs in Oncology?

- 1) I can't find analogs
- 2) The analogs are close but not exactly right
- 3) I don't have a problem
- 4) Don't know

Type your response into the survey tool

www.fosterrosenblatt.com

Confidential | Copyright Sep-19

20

Using Analogs as Share Proxies

Variables used to develop analogs outside of oncology often include:

- Product Profile (Efficacy, Safety, Side Effects, Dosing)
- Clinical Unmet Need
- Order of Entry
- Primary Care / Specialty Driven
- Promotional Intensity
- Retail / Hospital
- Acute / Chronic
- Market type : Generic or Branded

For Oncology, you will practically need to use a smaller subset of variables (likely 3-4)

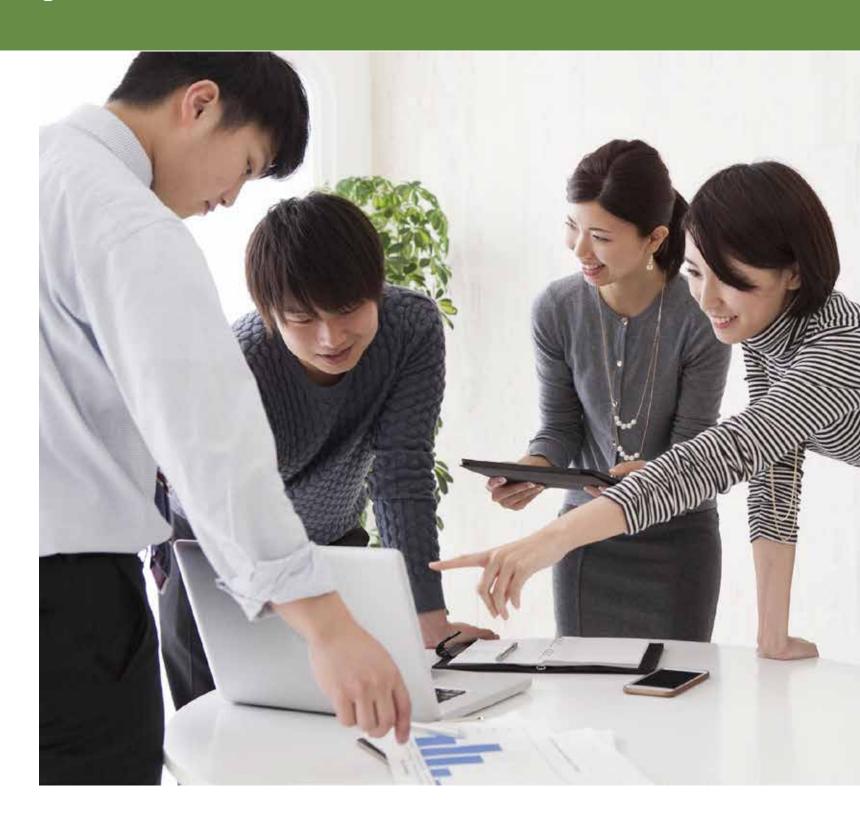
www.fosterrosenblatt.com

Given the unique dynamics of many oncology markets and products, analogs are often unavailable

Addressing Outputs

- Complex output = Greater development effort
 - Multiple forecast outputs (Patients, Gross and Net Dollars, MGs, Share)
 - Multiple countries & currencies
 - Require additional analytics
 - Waterfall analysis
 - Tornado plots
 - Sensitivity / What if analysis

Recommend


- Graphical interface
- Data export
- Transparency

www.fosterrosenblatt.com

Acquire or Build?

Dependent on

- Budgets
- Timelines
- Capacity for uncertainty
- Need for accuracy
- Complexity

www.fosterrosenblatt.com

Question

What kinds of processes exist in your companies to validate / align on forecast assumptions?

- 1) We don't align
- 2) Periodic meetings through the forecast development
- 3) Formal touchpoints in the process

Type your response into the survey tool

www.fosterrosenblatt.com

Securing Alignment

Developing Reasonable Business Forecasts

- Internal alignment is a key component of "Blessing" the forecast
- Alignment may be based on formal or informal processes
- Must be done at each step in the structured development process (step 1-5)

Securing Alignment

Developing Reasonable Business Forecasts

- Alignment with respect to Oncology forecasts can be additionally challenging
- Oriven by:
 - Management expectations of patient population
 - Historical numbers that do not align
 - Ad Board/KOL opinions
 - Internal processes
 - ✓ Target numbers set pre-launch
 - Proxies from other markets (which do not always transfer)
 - Preconceived notions of peak sales \$

Securing Alignment

Developing Reasonable Business Forecasts

- Alignment is best facilitated by
 - Transparency
 - Validation
 - Involvement in the process
 - Periodic touchpoints
 - Striving for "reasonableness"

Follow Up Webinar

Oncology Forecasting Part 2: Sourcing, Adapting and

Integrating Data

Date: Sept 25, 2019

Time: 12 pm

- Review data and sources to support epi-based oncology forecasting
- Examples for incidence, staging and treatment data
- Discuss securing and integrating data related to patient subsets and survival proxies
- How to review, vet and integrate data
- Examples of an adaptive patient flow epi-based model will be demonstrated